Saccharide Removal

Saccharide Removal Kit (DSRK2-500)

Removal of Interfering Saccharides in Ethanol Assays

DESCRIPTION

Saccharides such as glucose and sucrose are known to interfere with the QuantiChrom[™] Ethanol Assay (catalog# DIET-500). BioAssay Systems has developed a rapid procedure for complete removal of saccharides by co-precipitation with alkaline cupric and calcium ions. The treatment takes as little as 5 min and removes >99.9% saccharide from a sample.

APPLICATIONS

Rapid removal of interfering saccharides (e.g. glucose, sucrose) from samples such as culture media.

KEY FEATURES

Convenient and high-throughput. The procedure involves addition of two reagents sequentially and centrifugation for 2 min and transfer of the supernatant.

KIT CONTENTS (500 treatments)

Reagent A: 25 ml	Reagent B: 25 ml
neaueill A. 20 IIIL	neagent D. 20 mil

Storage conditions. The kit is shipped at room temperature. Store reagents at room temperature. Shelf life of 6 months after receipt.

Precautions: reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents. Please refer to Material Safety Data Sheet for detailed information.

SACCHARIDE REMOVAL

- 1. Transfer 100 µL Samples into Eppendorf tubes.
- 2. Add 50 μ L Reagent A to Sample tubes and mix.
- 3. Add 50 μL Reagent B to Sample tubes and mix. Precipitates form instantly.
- 4. Centrifuge for 2 min at 14000 rpm in a table top centrifuge.

The sample was diluted 2-fold (n = 2). After the precipitation, the supernatant contains $\leq 0.1\%$ saccharide (based on 2% initial saccharide concentration). The supernatant is ready for ethanol determination with DIET-500 assay kit.

ETHANOL DETERMINATION (DIET-500)

1. Prepare 600 μL 2% Premix by mixing 120 μL 10% Standard and 480 μL distilled water. Dilute standard as follows.

No	Premix + H ₂ O	Vol (µL)	Ethanol (%)
1	150μL + _ 0μL	150	2.00
2	120µL + 30µL	150	1.60
3	90µL + 60µL	150	1.20
4	60μL + 90μL	150	0.80
5	45μL + 105μL	150	0.60
6	30μL + 120μL	150	0.40
7	15μL + 135μL	150	0.20
8	0μL + 150μL	150	0

Transfer 100 μL standards and 100 μL treated Sample into separate wells of a clear 96-well plate.

- 2. Quickly add 100 μL of Reagent A to the standards and Sample wells. Tap plate to mix.
- 3. Read kinetics at OD580nm for 10min at 25°C.
- 4. Data analysis: Compute $\triangle OD$ by subtracting OD values of the blank value (#8) from Standards and Samples. Plot the standard curve and fit with saturation binding equation $\triangle OD = a \times [Ethanol] / (b + [Ethanol])$ to determine *a* and *b*. Ethanol concentration (%), corrected for the 2-fold sample dilution, is calculated as:

[Ethanol] =
$$\triangle OD \times b / (a - \triangle OD) \times 2$$

SAMPLES TESTED

Fermented teas, wines, beer, culture media (e.g. YPD and DMEM), etc.

MATERIALS REQUIRED, BUT NOT PROVIDED

Pipeting devices. Eppendorf centrifuge tubes, table centrifuge and clearbottom 96-well plates (e.g. Corning Costar).

Saccharide Interference in 96-well plate DIET-500 assay. Interference is eliminated upon precipitation of the saccharides using the DSKR2-500 kit.

Literature

1. Plimmer, RHA and Skelton, RF (1914). The Estimation of Allantoin in Urine in the Presence of Glucose. Biochem J. 8:641-8.

2. Pilone GJ (1985). Determination of ethanol in wine by titrimetric and spectrophotometric dichromate methods: collaborative study. J Assoc Off Anal Chem. 68:188-190.

3. Dubowski KM (1980). Alcohol determination in the clinical laboratory. Am J Clin Pathol. 74:747-750.

